Portada
Contacto
Down21 en facebook
Home / Salud y Biomedicina / Neurobiología / Atención temprana: bases neurobiológicas
Atención temprana: bases neurobiológicas
Salud - Neurobiología
Indice del artículo
Atención temprana: bases neurobiológicas
La atención temprana en el síndrome de Down
Resumen y conclusiones
Bibliografía
Todas las páginas

Jesús Flórez
Catedrático de Farmacología
Universidad de Cantabria

 

La plasticidad del sistema nervioso central

  

1. Concepto, formas y expresión

 

Todo el concepto y la estrategia de la atención temprana se basa en una propiedad fundamental de los seres humanos: la plasticidad de su sistema nervioso denominada neuroplasticidad.

La neuroplasticidad se define como la capacidad que tiene el sistema nervioso para responder y, sobre todo, para adaptarse a las modificaciones que sobrevienen en su entorno, sean cambios intrínsecos a su propio desarrollo, o cambios ambientales en el ambiente, incluidos los que poseen un carácter agresivo. Como sistema dispuesto y preparado para recibir toda la información sensorial, procesarla e integrarla, y como sistema capaz de generar respuestas y ejecutar funciones, la plasticidad del sistema nervioso le permite adaptarse a las circunstancias que varían en uno u otro sentido. La neuroplasticidad del cerebro, pues, se mide por su capacidad adaptativa, es decir, su capacidad para modificar su propia estructura, organización y funcionamiento.

Tanto durante el desarrollo como durante el envejecimiento se producen cambios en la organización del sistema nervioso central (SNC). Además, maniobras con particular exigencia (como puede ser el ejercicio continuado, la práctica intensa, o las necesidades propias del día a día) provocan modificaciones en el SNC que influyen en el aprendizaje y en la memoria. También los sucesos traumáticos que lesionan el SNC y se acompañan de deprivación o desaferenciación sensorial inducen cambios plásticos en su área correspondiente, y en la de otras áreas corticales.

La capacidad adaptativa propia de la neuroplasticidad puede expresarse a niveles múltiples, desde los más básicos y fundamentales hasta los más globales:

- genes y su transcripción
- modificación de moléculas
- sinapsis entre neuronas
- neuronas
- redes y sistemas neuronales
- el SNC en su conjunto


El análisis de la plasticidad puede realizarse en cada uno de estos niveles si se utilizan las técnicas correspondientes. Pero en último término, lo que nos interesará será comprobar la consecuencia funcional de esos cambios adaptativos: cómo se desarrolla la función servida por una determinada área o sistema neural del cerebro.

En términos generales, se suele diferenciar la plasticidad fisiológica o funcional de la plasticidad morfológica. La plasticidad fisiológica refleja los cambios ocasionados en las propiedades de las respuestas de las neuronas y sus conexiones. La plasticidad anatómica implica cambios en la estructura de la neurona y el neuropilo: número de neuronas, tamaño de sus arborizaciones, número de sinapsis, etc. Obviamente, ambos tipos de plasticidad no son contrapuestos: pueden aparecer conjuntamente o pueden hacerlo de forma separada; es decir, puede demostrarse la plasticidad fisiológica (p. ej., como aumento de la eficacia sináptica) sin que se demuestre plasticidad anatómica (p. ej., no hay cambio alguno estructural).

Cabe hablar de un patrón temporal en la sucesión de cambios que observamos como respuesta de las estructuras nerviosas ante un suceso estimulante. Inicialmente, puede ser un simple fenómeno fisiológico (p. ej., mayor número de moléculas transmisoras liberadas en una sinapsis, mayor número de descargas de la neurona). Pero si el estímulo persiste y la activación se consolida, aparecen ya cambios estructurales que refuerzan los anteriores (p. ej., mayor número de sinapsis). Esto permite distinguir, en función del tiempo transcurrido, entre:

- cambios rápidos o inmediatos (segundos a horas)
- cambios retardados o diferidos (días a meses)

Los inmediatos son fundamentalmente de tipo fisiológico; los retardados son principalmente anatómicos: brotes sinápticos nuevos, desarrollo de ramificaciones, etc.

En definitiva, el término de plasticidad neuronal va íntimamente asociado al de cambio en el estado funcional de la neurona (fisiológico, morfológico). Desde ese punto de vista, podríamos establecer un análisis comparado entre los cambios que observamos en una neurona conforme se va desarrollando en las fases propias del desarrollo cerebral, y los cambios que observamos cuando la neurona recibe una influencia que la invita a sufrir una modificación.

 

2. Maduración cerebral, estimulación y experiencia

 

Entre los rasgos más sobresalientes del SNC destaca la exquisita precisión de su ingente número de conexiones. Esta configuración tan compleja resulta tanto más sorprendente si consideramos que, en el momento del nacimiento, las conexiones neuronales prácticamente no están establecidas. Estas conexiones neuronales definitivas se van a establecer merced a la remodelación de la configuración inicial inmadura que contenía sólo un esbozo o insinuación de lo que será el modelo adulto definitivo. A medida que el cerebro crece, aumenta el número de sus prolongaciones y de los contactos sinápticos que establecen. El hecho de que sea necesaria la actividad neuronal para completar el desarrollo implica que la maduración cerebral es modificable a través de su propia estimulación y de la experiencia, proporcionando al cerebro la adaptabilidad necesaria. Este esquema resulta probablemente más económico desde el punto de vista biológico, ya que un modelo en el que se necesitara el control genético para la formación de todas las sinapsis exigiría un ingente número de marcadores moleculares específicos y de sus respectivos genes.

En las primeras etapas del desarrollo existe poco espacio para que aparezcan cambios plásticos; digamos que la programación es eminentemente genética y poco asequible a ser manipulada. En las etapas más posteriores del desarrollo, sin embargo, la plasticidad influye de manera mucho más destacada, de forma que la experiencia inicial controla en parte la riqueza de conexiones entre las neuronas, y es sustancialmente responsable de todo el rico entramado final. En las etapas posteriores al nacimiento, las diversas influencias y estímulos van provocando nuevos brotes dendríticos y axónicos, con nuevas ramificaciones. Y finalmente, van estableciendo, reforzando o eliminando los contactos sinápticos hasta conseguir la remodelación final de los circuitos.

Se acepta que existen momentos o períodos especiales en los que cada una de las distintas áreas del SNC presenta especial sensibilidad y capacidad de respuesta para la modificación inducida por las diversas influencias. Por lo que sabemos, la influencia de la experiencia afecta más a la organización final de los circuitos locales que a las vías principales, porque para entonces ya se ha completado la organización topográfica de los grandes circuitos.

Aunque sabemos poco de los factores que controlan la duración y el momento en que se establecen estos periodos de especial sensibilidad, guardan particular relación con la sinaptogénesis, es decir, con una fase en la que existe hiperproducción de sinapsis en la corteza cerebral. Pero muchas de estas sinapsis se van a perder dando origen a un fenómeno de remodelación de gran calado. Podríamos decir que el programa de desarrollo genéticamente preestablecido configura las fases de producción o estallido sináptico: un periodo de particular sensibilidad para recibir la información sensorial que en último término va a condicionar y dirigir el aprendizaje. Pero es el individuo con las influencias externas que lo circundan quien decidirá al final cuál ha de ser el entramado de redes sinápticas que se forman, que será lo que haya de condicionar su experiencia, su aprendizaje.

No todas las áreas cerebrales presentan periodos de sinaptogénesis y de pérdida sináptica al mismo tiempo. En la corteza visual primaria hay un brote de sinaptogénesis hacia los 3-4 meses de edad con una densidad máxima a los 4 meses. Pero en la corteza prefrontal tarda más tiempo y alcanza el máximo de densidad sináptica a los 3-5 años. El curso temporal de la eliminación de sinapsis se prolonga también más en la corteza frontal (hasta los 20 años) que en la corteza visual (4 años). Podemos concluir afirmando que son distintos los tiempos de maduración para las diversas estructuras cerebrales, y que las áreas primarias corticales senso-motoras se desarrollan antes que las grandes áreas de asociación.

 

3. Datos experimentales: el enriquecimiento ambiental

 

Son muchos los modelos experimentales que se han utilizado para valorar la influencia de las modificaciones del ambiente sobre el desarrollo cognitivo. Quizá uno de los que alcanza resultados más sorprendentes es el modelo de enriquecimiento ambiental. En este modelo, los animales (generalmente roedores: ratas y, menos frecuentemente, ratones) son estabulados en jaulas más grandes de lo habitual, y en mayor número por jaula. En las jaulas se colocan juguetes que se van cambiando, de formas y colores variados. Se incluyen escaleras, ruedas giratorias, y se plantean dificultades para el acceso a la comida que también puede ser varias en textura y sabor. Los animales que han sido sometidos a este tipo de estimulación durante periodos variados de tiempo (generalmente, 1 o 2 meses después del destete) presentan diferencias sustanciales frente a sus compañeros estabulados en condiciones estándar: realizan mejor las pruebas que requieren un aprendizaje complejo, son más competentes en las pruebas que evalúan la memoria visoespacial y la memoria a corto plazo, e incluso pueden mostrar signos más tardíos de envejecimiento. Estos resultados de carácter cognitivo se acompañan de modificaciones neuroanatómicas, como son: el aumento de grosor de la corteza cerebral, el incremento en el número de las espinas dendríticas y el aumento en el número y tamaño de las sinapsis, y el aumento del proceso de neurogénesis arriba descrito. A nivel neuroquímico, se aprecia un incremento en la expresión de numerosos genes que tienen que ver con el desarrollo neuronal, y modificaciones en el funcionamiento de las vías de señalización intraneuronal que son activadas en respuesta a estímulos neuroquímicos diversos.

Pero no es sólo la estimulación ambiental la que puede originar modificaciones perdurables en el neurodesarrollo. Estimulaciones más sutiles como es la estimulación táctil postnatal, mantenida de modo suave y permanente durante un cierto tiempo después del nacimiento (manipulación táctil consistente) ejerce efectos beneficiosos en forma de una menor reactividad emocional, menos tendencia al estrés, mayor capacidad de aprendizaje en situaciones emocionales. Mientras que cuando la estimulación es “inconsistente” porque las maniobras tactiles han sido irregulares en su forma y frecuencia, los animales presentan mayor reactividad emocional y ven reducida su capacidad para ciertos aprendizajes.

De lo expuesto se desprende que el ambiente es capaz de modificar la función y la estructura cerebral, de forma que la experiencia tiene consecuencias en diferentes niveles de integración más o menos perdurables. Esto es especialmente cierto durante las primeras etapas de la vida en las que el desarrollo cerebral en las que la experiencia tiene una importancia mayor, si cabe, ya que no sólo facilita patrones. Pero no siempre la modificación de una función se acompaña de modificación de la estructura, y esto conviene tenerlo muy presente sobre todo cuando el cerebro se encuentra sometido a perturbaciones incisivas y constantes que dificultan la expresión de los procesos adaptativos en toda plenitud.